
Human-Powered Vehicle Team

Final Presentation

By: Yen C., Yujie Z., Abdulh A., Daniel Q., Connor T.

Project Description

- Originally, the project was to create an innovative propulsion system for an HPV utilizing multiple muscle groups
- This semester, the team transitioned to retrofitting a propulsion system that recaptures spent energy to an existing HPV
- The operative part of the system is the flywheel, allowing for mechanical energy storage with minimal loss
- The system is user actuated, but metrics will be displayed to the user based on the system's immediate state

Design Description -Requirements and specifications

- The propulsion system now recaptures energy through regenerative braking, with no input from the user
- 15% efficiency goal from intake to output after systematic losses
- 600J sustained energy storage in flywheel
- Energy gathered at 20mph or lower

No.	Engineerig Req.	Value
1	Energy Stored	600 J
2	Regen. Braking Efficiency	0.15
3	Max. Speed	20 mph
4	Display Metrics	Yes/No
5	Usable Energy Threshold	200 J

Design Calculations

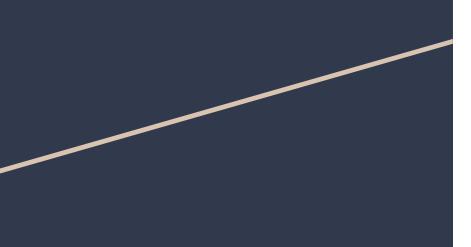
Clutch Design

Material			cork on steel or cast iron 🔹	
Surface Finish				
Outer diameter	D	in	4	
Inner Diameter	d	in	3	
Thickness	th	in	0.25	
Actuating Force	F	lb	200	
Contact Pressure	P	psi	36.37827271	
Wear Coefficient (Clutch)	K	in^3*min/(lbf*ft*h)	0.00013	
Wear Coefficient (Flywheel)	K	in^3*min/(lbf*ft*h)	0.000017	
Coeff. of Friction	u		0.5	
Angular Velocity	v_ang	rad/s	0.3912559018	
Peripheral Velocity	V	ft/min	2.934419263	
time used	t	hour	100	
Revolutions		rpm	147.5	
Desired Safety Factor			1.5	
Max Pressure	P_a	psi	36.37827271	
Clutch Wear	w	in	1.387738355	
Flywheel Wear	w_	in	0.1814734771	
Contact (Normal) Force	F	lbf	171.4285714	
Frictional Force	fric	lbf	85.71428571	
Torque Capacity	Т	lb-ft	12.5	
Max Torque	SFT	lb-ft	8.33333333	

- After the Change of scope, the most important parts of the design were the clutch and flywheel.
- These design tools were created to help ensure ERs were met. Values found by using these governed our design

Flywheel Design

Material			Steel	Bike Mass	m_b	kg	35
Angular Velocity	w	rad/s	102.21	Bike Speed	V	m/s	9.00
Density	р	kg/m^3	8000	Wheel Diameter	D_b	m	0.6604
Inner Diameter	d	m	0.0127	Angular Velocity	w_b	rad/s	27.26
Outer Diameter	D	m	0.279				
Thickness	th	m	0.0508	Bike KE	E_b	Nm (J)	2835.0
Flywheel Mass	m_f	kg	24.87		_		
Inertial constant	k	-	0.3	Input Values		Final Speed ?% Efficient	
				Stagnant Values			
Moment of inertia	L	kg*m^2	0.146	Calculated Values		2.95	m/s
Flywheel KE	E_f	Nm (J)	760.5		•	6.59	mph


Manufacturing and Design Solution

- Original design required inputs from the operator and the kinetic energy recovery system, but a mounting system was never designed
- The current system is built to be modular, and is built onto a single shaft, with a channel to index the components
- Clutch fixture machined from aluminum, which carries the sprocket and translates along the shaft
- Jaw actuator 3D printed from steel reinforced filament
- All parts are carried by bearings, and the system is returned to neutral by a spring, and is captured by collars at each end

Testing Plan

No.	Engineerig Req.	Value		
1	Energy Stored	600 J		
2	Regen. Braking Efficiency	0.15		
3	Max. Speed	20 mph		
4	Display Metrics	Yes/No		
5	Usable Energy Threshold	200 J		

Software/Sensor Test Procedures

1. Unit Tests

- a. Display
 - i. Assert Display On = True
 - ii. Test character limits
 - iii. Test scrolling

b. Sensor

- i. Assert Low Input = True
- ii. Assert Low Input = Led True

c. Calculations

- i. Assert with base case input
- ii. Compare against calculator
- iii. Test with inconsistent RPM

2. System Testing

- a. Test cases involving expected input and output
- b. Use of Tachometer & Odometer
- c. Test lowest and highest threshold
- d. Test safety measures


3. End User Acceptance Testing

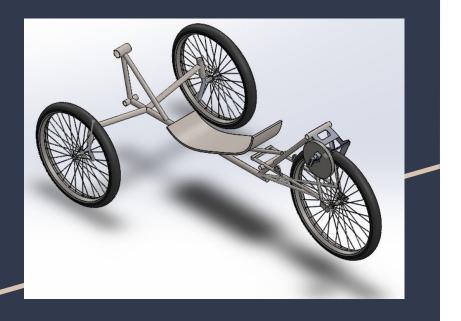
- a. Non biassed user tests
- b. Refine based on result of tests

Yen - Nov. 29, 2021 - Human-Powered Vehicle

Testing Plan

No.	Engineerig Req.	Value		
1	Energy Stored	600 J		
2	Regen. Braking Efficiency	0.15		
3	Max. Speed	20 mph		
4	Display Metrics	Yes/No		
5	Usable Energy Threshold	200 J		

Energy Storage/Efficiency Test Procedures


- 1. Measure vehicle speed
 - a. Sensors will measure speed
 - b. Double check with Odometer App
 - c. Record Data
- 2. Engage clutch to power flywheel
 - a. This will take some practice
 - b. Measure the amount of time of engagement
- 3. Measure flywheel angular velocity
 - a. Using sensors
 - b. Double Check with tachometer
- 4. Re-measure vehicle speed
- 5. Engage clutch to remove power from flywheel
- 6. Measure vehicle speed
- 7. Repeat steps at different speeds
 - a. Increments of roughly 5 mph

Budget

	Bill of Materials						
	Team		НРУСР				
Part #	Part Name	Qty	Description	Material	Dimensions	Cost	Link to Cost estimate
1	Elegoo Kit	1	Electronics kit	Various		\$59.00	https://www.amazon.com/gp/product/
2	Hall Effect Sensor US1881	3	Latching	Steel	TBD		https://www.sparkfun.com/products/9.
3	Backlight Graphic LCD	1	Display	Various	75x52.7mm	\$23.95	https://www.sparkfun.com/products/7
4	N24 Neodymium Disk Magnet	3		Nickel-plated neodymi	0.250"* 0.200"	\$9.75	https://www.magnetshop.com/neodym
5	Manual Clutch Set	1	Clutch	Carbon Steel		\$40.39	https://www.amazon.com/GOOFIT-Hea
6	Radial Ball Bearing	1	Bearing	Steel	Outside Dia.1.37	\$9.92	https://www.grainger.com/product/TRI
7	Radial Ball Bearing	4	Bearing	Steel	Outside Dia.1.12	\$25.80	https://www.grainger.com/product/TRI
8	Thrust Bearing	1	Bearing	Steel	Outside Dia.1.56	\$7.28	https://www.grainger.com/product/INA
9	Roller Chain Plate sprocket	2	sprocket	Carbon Steel	24 Teeth 1/2" Bo	\$32.48	https://www.amazon.com/KOVPT-Rolle
10	Keyed Shaft	1	Shaft	Steel	1/2" X 36"	\$23.00	https://thebigbearingstore.com/1-2-x-
11	11 Tooth Sprocket	2	sprocket	Carbon Steel	11 Teeth	\$20.74	https://thebigbearingstore.com/11-too
12	Low-Carbon Steel Disc	1	Flywheel	Carbon Steel	10" 1"Lg	\$76.87	https://www.mcmaster.com/7786T292
13	Thrust Bearing	1	Bearing	Steel	0.5 in Bore	\$5.08	https://www.grainger.com/product/INA
14	Rear Disc Hub	1	hub		7.5 x 4 x 3 inche	\$59.95	https://www.amazon.com/SHIMANO-F
15	Screen mount	1	3D Print	PLA		\$21.42	
16	friction plate fixture	1	3D Print	PLA		\$6.21	
17	spiral jaw	1	3D Print	PLA		\$19.20	
18	fixture	1	3D Print	PLA		\$36.00	
19							
20							
	Total Cost Estimate:						

Budget remain: \$1500 - \$487.82 = \$1012.18

Future Work

- To complete the system, the clutch and flywheel assembly needs to be mounted to the vehicle.
- To have continuity in the system, the sprockets need to be bored in order to be mounted to the wheel and clutch. Flywheel needs to be bored as well.
- The new hub needs to be laced to the rear wheel